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ABSTRACT

A previous treatment of overtone modes in trapped energy resonators is

extended to the case of plates with slowly varying thickness. The resulting

single scalar equation is applied in the analysis of plano-convex contoured

quartz crystal resonators and a lumped parameter representation of the admit-

tance, which is valid in the vicinity of a resonance, is obtained. The

analysis holds for the fundamental and anharmonic overtones of the fundamental

and each harmonic overtone thickness mode. The influence of piezoelectric

stiffening, electrode mass loading and electrical shorting is included in

the analysis. No adjustable parameters are required in the theory. Although
the basic piezoelectric differential equation employed here is quite different

from the ones that have been employed in similar applications heretofore, the

analysis accounting for the contouring has appeared in the literature. It

is shown that calculations based on the analysis agree extremely well with

experimental results obtained with contoured AT—cut quartz crystal resonators.
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1. Introduction

In a recent investigation’ the three-dimensional equations of linear

piezoelectricity, with the aid of certain simplifying assumptions, were applied

in the analysis of rotated Y—cut quartz trapped energy resonators with rect-

angular electrodes operating in overtones of coupled thickness-shear and

thickness—twist vibrations. In this paper the previous analysis is extended

to the case of plates with slowly varying thickness. The asymptotic dispersion

relation for small wavenumbers along the electroded flat plate obtained in the

recent analysis
1 

of trapped energy resonators enables us to construct the

single scalar differential equation of coupled thickness—shear and thickness—

twist, which holds for plates with slowly varying thickness. The simplifying

assumptions of small piezoelectric coupling, one-dimensional (thickness)

dependence of all electrical variables and the neglect of certain small unim-

portant elastic constants employed in the earlier
1 

analysis naturally are

employed here also. The influence of piezoelectric stiffening, electrode mass

loading and electrical shorting is included nonetheless. Since the influence

of the contouring on the trapping is much greater than the influence of the

discontinuity between the electroded and unelectroded reg ion, the edge of the

electrode is ignored in the determination of the eigensolution. Since the

mode is assumed to be highly trapped in the vic inity of the center of the con—

toured plate, the boundary conditions at the edge of the plate are ignored in

the analysis. The procedure for obtaining the eigensolution follows that of

Wilson2
, who treated the purely elastic case using an incorrect equation which

3 4
had been used earlier by others
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2 .

The resulting inhomogeneous single scalar equation is applied in the

analysis of the forced vibrations of a piano-convex contoured AT-cut quartz

crystal resonator and a lumped parameter representation of the admittance is

obtained. Calculations based on the analysis are in excellent agreement with

the results of experiments on contoured AT-cut quartz crystal resonators.

2. Basic Equations

A schematic diagram of a piano-convex quartz crystal resonator is shown

in Fig.l. Since the thickness Ii is a slowly varying function of x1 
and x3, it

is appropriate to first consider the solution for the electroded flat plate

shown in Fig. 2 and then generalize it to be applicable to the contoured plate

with slowly varying thickness. Accordingly, we first briefly reproduce the

analysis
1 of the electroded flat plate. On the basis of the simplifying

assumptions of small piezoelectric coupling, the neglect of certain relatively

small unimportant elastic constants and the fact that in the essentially

thickness—shear modes of interest, the wavenumbers in both the x1- and x3-

directions are much smaller than the thickness wavenuinber, it has been shown1

that to second order in small quantities the differential equations that remain

to be satisfied take the form

c11u111 + (c r2 +c66 )u
2 12 22 33 

+e26cp 22 = 
j~•~~~

Cc66 +c 12)u 1 12 ~~ C
6~~~~2 11

+c
22u2 22= pt~2 ,

e26u122 
— e22 p 22 = 0 , (2 .1)

and we note that the notation is defined in Ref.l. We further note that for

the circumstances outlined it has been shown1 that u3 is two orders of magnitude

smaller than u1 and, 
hence, negligible to the order of approximation being

obtained. To the same order of approximation the pertinent constitutive

equations take the form1
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T21 = C66 Cu1,2 + u2 1 5 ) + e26cp 2 ’

T22 = C 12U
11 

+c22
u22 , T11

=c
11
u
11

+c
12
U22 ,

T31 C 55U
1 3  

+e25~p 2, 
D2 = e26u1 2 

— 
~~22~~~~~ 2~~~ 

(2.2)

and the boundary conditions that remain to be satisfied on the electroded major

surfaces of the flat plate take the form

T21 = R 2 p ’h’ti1, T22 =
:F 2P’h’ii2, cp = ±  (V/2)e~~

t at x2 ±h , (2 .3)

where p ’ is the mass density of the electrode plating.

It has been shown 1’5 that in order to remove the inhoniogeneous driving

term from the boundary condition (2 .3) 3 and place it in the differential

• equation (2 .1) 1, we take

u1=u 1 + K x 2e’°~~, ~~~~~~~

= ~~~~ ~ iWt 
+ + cx 2e~~~~, (2 .4)

where
K = - e 26V/c66 2h , C=-(e26/s22)G1

(h)/h . (2.5)

Then the substitution of (2 .4) into (2 .1) and (2 .3) , wi th (2 .2)  and (2.5),yields

A A — A A 2 iwt
11 + (C

12 
+ c66 )u 2 1 2  + c66U1 22 + ~55~l 33 

= pu1 
— pw Kx 2e

c66~ 2,11
+ Cc~~ +c 66

)~ 1 12 ~~~~~~~~~~~~~~~~ ~~~~ (2 .6)

c66~i2,1
+ E 66~ 1,2 F (e~6/e22h)~i1~~~ 2p ’h ’G1 at x2 = ±h ,

c22
G

2 2
+c 12~~1,1’~~~F 2p ’h’~ 2 at x2=±h , (2.7)

where
= c66 + e~6/e22, 

(2.8)

-.=-- .—.-5 --- 
- - . - -- - 5 - -  -~~~~



4.

and (2 .1) 3 and (2.3) 3 are satisfied by the forms chosen. Equations (2 .6) and

(2 .7) constitute a system of linear inhomogeneous differential equations with

homogeneous boundary conditions on the major surfaces of the electroded flat

plate. It has been shown 1
’

5 that an asymptotic eigensolution for plate waves

valid to second order in the small wavenumbers g and v along the electroded

flat plate can be written in the form

U
1 

= (B~
1
~ sin T~1x2 + B~

2
~ sin t1L~x2 ) con con Vx3e~~

t 
,

= (B~~~ cos 111x2 ÷~~(2) cos tfl1x2 sin ~x~ cos vx3e’~~~, (2 .9)

where

nfl (1) ~~~~~~ (2) 
______

= 
‘ 

~ 

‘ 
B~ 

n-I-]. ~~ 

B1 
~

1l
2 (1)

C 12 +c66 (2) (—1 ) (c12 +rc 22
)~ B1

• r =  B = (2 .10)
C66 

— C22 
‘ 2 sin

provided the dispersion relation

2 22 2 nTr~~~ -.2
M ~ + c55~, + —i-. c66 — pw = 0 , (2 .11)

n 4h

which is valid to second order in ~ and v , is satisfied, and where we have

employed the definitions
(rE66 —c66

)(c22r+c 12
)cot nnTT/2

M5
C11

+ (C 12 +c66
) r + 4  

c22
flfl ~

~66 ~~66(
1 - ~~~~~~~~~~~~~ 2~) ,  k~6 = —

~~~~~~~ 

, = . (2 .12)

The derivation of the dispersion relation (2 .11) in Refs .1 and 5 reveals

that (2 .11) is obtained from the homogeneous form of (2 .6) 1 when (2 .6) 2 and

(2.7) are satisfied to second order in ~ and v. In particular, when (2.6)2
and (2 .7) are satisfied to second order in ~ and v and the resulting relations

are substituted in the homogeneous form of (2 .6)
~~, 

there results

(M~~~~+c 55v2 + !~~~..a
66

_ p ~ 2)~i1. O , (2 .13)
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f rom which the dispersion relation (2.11) is obtained for nonzero G], which

is the large mechanical displacement field. On account of the foregoing,

from (2 .6) 1, (2 .5)
~ 

and (2.13) it is clear that the inhoinogeneous differential

equation governing coupled thickness—shear and thickness-twist vibrations is

of the form
2 2  

A A 2 e26 Vx2 iwtMn —T + C 55 ~-T — ~~~~~~•~~
••• C66U]~~~ PU1= ~W c 2h e , (2 .14)

4h 66

where w is the driving frequency. Clearly, the homogeneous (V = 0) solutions

for the flat plate are consistent with (2 .11). It has been shown 1’ 5 that when

the approximation holds and, hence, by virtue of the foregoing, Eq. (2 .14 ) may

be employed, the approximate edge conditions to be satisfied at a junction

between an electroded and unelectroded region of the plate are the continuity

of

and ~~1/~n , (2 .15)

where n represents the normal to the junction.

We now generalize Eq. (2 .14) for the flat plate to be applicable to a

contoured plate with slowly varying thickness simply by permitting h in (2 .14 )

to be a slowly varying function of x1 and x3. To this end consider the geometry

shown in Fig. 3. Since, as shown in Fig .3, the triangle inscribed in the semi-

circle and containing a diameter is a right triangle, all three right triangles

are similar and we have

2R— (2h — 2h)o 
— 

r
r 2h -2h ’

0

where
r= (x~ + x~ )

’
~, (2 .17)

and R is the radius of curvature of the spherical surface of the contoured

resonator . Since 2h0 << R, from (2 .16) with (2 .17) , we obtain
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2h = 2h [l— (x~~+ x ~ )/4Rh I , (2.18)

the substitution of which in (2.14) and expansion to first order in

yields
2~ 2A 2 2  2 2

~ U
1 ~ U

1 
fl ~~ C66 r (x

1 + x 3
)
1

2 ~~ 2I~h 
1 u 14h0 0

2 e26Vx2 iWt
c 2h 

e (2.19)
66

which is the inhoinogeneous differential equation for coupled thickness-shear

and thickness—twist vibrations of a plano—convex resonator.

3. Contoured Resonator

The problem of a contoured resonator driven into coupled thickness—shear

and thickness—twist vibrations by the application of a driving voltage across

the electrodes in the steady state may now be treated by finding the steady—

state solution of (2.19) which remains bounded and vanishes at infinity.

The solution is assumed to be continuous across the edge of the electrode be-

cause the influence of the contouring on the mode shape (trapping) is much

greater than the influence of the discontinuity between the electroded and

unelectroded region. The differential equation of coupled thickness—shear

and thickness-twist vibrations for the electroded portion of the contoured

resonator, Eq. (2.19), is employed because the modes are sharply confined in

the vicinity of the center of the contoured resonator and the relatively large

electrodes are located in the central part of the contoured plate. Similarly,

the boundary conditions at the edge of the contoured plate are ignored in

the analysis because the modes are highly trapped in the vicinity of the

center of the contoured plate and have negligible amplitude at the edge of

the plate.
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We first seek the eigensolutionS of the associated homogeneous problem,

i.e., with v 0 .  To this end we take the G1-displacement field in the form

£11(x1, x2, x3, t) = u ( x 1, x3 ) sin (nu 2/2h)e1
~~ , (3 .1)

the substitution of which in (2 .19) yields

2 2 n2n
2
~ ,- (x2 4-~

2)• 
~~u ~~u 66 1 31  -.2M~~~~~~~~~+ C 55~~~~~~~~ 2 2Rh j u + p w u = 0 , (3 .2)

~x3 4h0 o

where ~ denotes the eigenfrequency. As a solution of (3 .2) we take

u = X (x1
)Z(x3) , 

(3 .3)

which satisfies (3.2) provided

X” + (y
2
—cr

2
~4)X=O , ~~~~~ (~

2 _ 
~~x~~Z=O , (3.4)

where the undetermined separation constants y and L~L satisfy

— !LI~. ~66 =I~ y
2
+c55~

2
, (3.5)

and
= fl

2T T C 66/SRh M , ~ = n
2 f l2~ 66 / 8Rh

3
c55 . (3.6)

The only solutions of (3 .4) that are bounded for all x1 and x3 and vanish at

are the Hermite functions6

2 2B~x3

X = e ~~~ 
2 
H~~

/
~~X1

), Z~~ =e 
2 

H~~ ’çX3
), (~ •7)

where H and H are ~ermite polynomials and

(3 .8)

which are determined from the condition that the series for and B terminate

and they be polynomials. Since we are interested in only those solutions which

are symmetric in x1 and x3, we have
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m,p 0,2,4 (3.9)

For a given value of n, m and p, (3 .8) , with (3 .6) , determines the values of

the separation constants and 
~pn’ 

which, from (3.5), yield the eigenfre—

quencies w in the formnmp

2 
= 

n : :66 
~~ ~~~~~~~~ 

(2m + 1) + (2p + 1))]. (3.10)

We now write the steady-state solution of (2.19) as a sum of eigensolu-

tions, thus
ul =e  H U ~•fl~p .~ (3.11)

n m p
where

A 
x

u =u e , u = sin —~- u  , (3 .12)
~.nmp m a p  map 2h nap

and 2 2xl x3
u = e  ~ ~~ H (v~~ x1

) e n 2 H LJrx3) , (3 .13)

and we note that along with 
~l’ from (2.4)3 and (2 .5) 2, we have

n-iVx2 .

~~~~~~ 

e26 ~~ ., ~~ -, 
~~

, ( 
- 

~~~ T X
2\ ~~~~~p = - ~~- e  

~ 
L L. L H ~~~~~~~~~~~~~~~~~~~ .j~.

,)e
n m p (3 .14 )

Since the eigensolutions are sharply confined in the vicinity of the center of

the contoured plate and have negligible amplitudes at relatively small values

of x1 and x3, 2h in (2 .18) may be replaced by 2h0 in any integration over the

eigensolutions performed in the course of this forced vibration analysis with-

out appreciable error. When h is replaced by h0, the solution functions in

(3.12) 2 with (3.13) satisfy an orthogonality condition, which may be written

in the form

- - - - ~~~~-- - - -- - _ _ _  

- .

~~~~

. j
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~ h~,ii f J U
p
U
1~~~ 

dx
1
dx

3dx2 L~~~~~~()8 6 6  , 3.15
-~~~ -~~~ -h

0

where

= TIh 2mm! 2~p! /.j~~ ic. (3.16)

Substituting from (3.11) and (3.12) into (2.19) and employing (3.2) for each

nmp-.eigensolution, we obtain

nTtx w
2
e Vx• ~~~~~~~~~ ‘

~. nmp 2 —.2 . 2 2 6 2
1 1 1 H (w—~~ )sin — u = (3.17)nap 2h nap c 2h
n a p  U

where it is understood that V= 0 in the unelectroded region. From (3.17) we

form
h

~~~~~~~~~
‘ ‘

~~
‘ nap 2 -.2 r r  I’ . 2 . 2

L L ~~ (w - w )  j J u~~~u,~~~dx1 dx3 J sin sin —
~~~~

— dx2 =

n m p -
~~~~~

—
~~~ -h

h

~~~26 ,f 1 
~~~~~~~~~ 

dx1dx3 $ x2 sin ~‘~~2 dx2 , (3.18)
66 A -he

where A is the area of the electrode, and replacing h by h on both sides of

(3.18), with the aid of the orthogonality condition in (3.15), we find
n- 1
2(—1) e 4hJ V26 O nap 

(3 19)2 2  -2 2 ~C f l I T L [ l — ( W  /w )]66 nap nap
where

J =4F F , (3.20)nap lnm 3np

and if , as is reasonable in the case of the contoured resonator because the

mode shape is sharply confined to the center, we replace the circular electrode

by the circumscribed square with lengths 2L1 = 223, we have 

-—- ----~- -- - — -- -———~~~—.---~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-

~~~ X
l

Flna = S e  
n 2 H ( J ~

_
X ) d X

F
3~p 

= J e n ~ H
~~(JcX3

) dx 3 . (3.21)

Thus, Eqs. (2.4), (2.5), (3.11) — (3 .14) , (3 .16) and (3.19) — (3 .21) constitute

the series representation of the steady-state solution for the linear forced

vibrations of this contoured resonator. In the vicinity of a resonance, say

• the NMPth, one term in the sums in (3.11) and (3.14) dominates and the others

are negligible. Thus in the vicinity of said resonance the steady—state

solution may be written

NMP . 
NTIX

2 iWt 
e26Vx2 iwt

u1
H sin —s— u~~~e - 

c662h 
e

= 
Vx2 e1Wt + _~~~~~ H ~~~ ~~~~~~~~~~~~~ (-1) ~~ ~~)e~~

t 
~ (3.22)

where, as usual, 
~~~~ 

in (3.22) is to be replaced by

W
NMP 

= + xwNf4p/2QN.t4p , (3. 23)

in which is the unloaded quality factor of the contoured resonator in

the NMPth mode. The admittance of this rotated Y-cut contoured resonator

operating in the NMPth mode is obtained by substituting from (3.22) into

(2 .2 ) 5, which is then substituted into

~~= 

~e 

1)
2 dx1dx3,  (3.24)

with the result
iwe ~2 J

~NMP 
— = 

2h ~~ 26~~ e + 
22 26 p , (3.25)

L . ~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~
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where

~26 = e 26’c66 c2 2 ,  Ae = A + / ’81th ) , (3 .26)

and in obtaining the second term in (3 .25) we have again replaced the circular

electrode by the circumscribed square with lengths 2L
~ 

223 to perform the

integrations. The quantities C0 and ~~~~ defined by

A A 2  a2~~~~A € 22 (l+k 26
) 4c

22
k
26~j’~~,C — 

2h0 
Cj~~4p = 

N
2r 2L~ ,~ 

(3 .27)

are called the static and motional capacitances, respectively. The integrals

appearing in (3.21) , which appear prominently in (3 .27) 2, have been evaluated

for a few values of M and P and take the form

F1NO ~~~ ~~~~~~~~~ 2i, F3~~ 
—i- erf 23,

2 I~—
~~~~~~ erf IT ~ 

— 4L 1 e ,

~
‘3N2 

= j  J~~~ 

erf Pj~~ 23 - 423 e~~~~~~
2

F1N4 = 
12 erf Li 

— 16 ~~L~e
t
~~

F3N4 — 
_
~:a. 

j~ 
erf J..~~ 23 —1 6 

~N 2~e~~~~~
”2
. (3 , 28)

4. Results

Equation (3.10) has been employed in the calculation of some resonant

frequencies of two piano—convex resonators, which are compared with frequency

measurements on the respective resonators. The first resonator has a blank

diameter of .550 in., an electrode diameter of .370 in ., a radius of curvature R

of 5 diopters, which is 106 me, an electrode mass loading ratio Rof l.864Xl0
3

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

-~-~-•— -.~-~ i .

. 

- - - -

- - 
- -
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and a measured thickness 21i .0271 in. = .6883 nun. Since we did not have
0

confidence in the accuracy of the measured thickness to the required number of

significant figures, we adjusted the thickness in order that the calculated

value of f(3,0,0) agree with the measured value. The adjusted thickness 2h

is .68785 mm. The comparison between the calculated and measured values is

given in Table I, which shows that the agreement between theory and experiment

is excellent with the exception of f( 1, 2 , 2 ) .  We believe that strong coupling

to flexure, which has been omitted from the theory, exists in the case of the

mode for which the calculation does not agree well with the measurements . The

measured frequencies in Table I are the average values determined from five

units. For this resonator the motional capacitances of a few of the modes have

been calculated from Eq. (3.27) 2 and compared with the average value determined

from the measurement of five units for each mode. The comparison between the

calculated and measured values is given in Table II , which shows that the

agreement between theory and experiment is reasonably good .

The second resonator has a blank diameter of .590 in., an electrode

diameter of .374 in., a radius of curvature R of 2.0 in., which is .0508 m,

a measured thickness of gold electrode 2h ”= 750 A and a maximum plate thick-

ness 2h = .06502 in. 1.65l5 x l0
3 
a. In this case we used the measured

maximum plate thickness, since the measurement is considered to be accurate to

one more sign ificant figure than in the case of the f irst resonator, and conse-

quently, no adjustable parameters were employed. The comparison between the

calculated and measured values is given in Table III, in which excellent

agreement between theory and experiment is indicated again.
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TABLE I

Mode Calculated Measured
N M P Frequency kffz Frequency kflz

1 0 0 2508.2 2505.5
1. 0 2 2684.0 2683.4
1 2 0 2728.6 2727.7
1 2 2 2891.0 2843.2
3 0 0 7325.8 7325 .8
3 0 2 7510.9 7514.1
3 2 0 7520.0 7520. 1
3 2 2 7700.5 7693.4
5 0 0 12152 .6 12154 .1
5 0 2 12339.6 12343.0
5 2 0 12366.3 12367.7
5 2 2 12550.1 12532.0

TABLE II

Mode Calculated Measured
N M P  C

1
fF C

1
fF

1 0 0 14.24 13.21 ± .05
1 0 2 5.81 6.25 ± .24
1 2 0 4.64 2.16 ± .03
3 0 0 0.50 0.52 ± .03
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TABLE III

Mode Calculated Measured*
N M P Frequency kffz Frequency kflz

1 0 0 1097.47 1094.75

1 0 2 1248. 72 1245.93

1 2 0 1285. 69 1263.23

1 2 2 1416. 99 —

3 0 0 3103.25 3103.54

3 0 2 3270.74 3278.93

3 2 0 3278.82 3285 .67
3 2 2 3437.77 3430.30

5 0 0 5123.38 5120. 14
5 0 2 5294.40 5297.28

5 2 0 5318.61 5319.72

5 2 2 5483.54 5472.17

7.0 0 7127.01 7129.09

7 0 2 7299.73 7292.75

7 2 0 7318.23 7320.40

7 2 2 7486.54 7486.37

*
Mode identification is conjectural . Measured data

courtesy of T.R. Meeker and A.A. Comparini of Bell
Laboratories.
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FIGURE CAPTIONS

Figure 1 Piano-convex Resonator

Figure 2 Electroded Flat Plate

Figure 3 Geometry for Spherically Contoured Surface of Resonator 
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